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Abstract 

 
Traditional geological methods for quantifying grain morphology and mineralogy are 
often manual, time-consuming, and rely on subjective classification criteria. This case 
study delineates and characterises individual heavy mineral concentrate grains ranging 
from 300 to 100 microns in diameter within sample sizes ranging from hundreds to 
thousands of grains. We compare two segmentation algorithms designed to enhance the 
quantification of granule morphology: a) a Euclidean-based watershed (EBW) technique 
and a deep convolutional neural network, and b) the Segment Anything (SAM) model from 
Meta, for their grain segmentation accuracy. Empirical results indicate a marked 
improvement with the SAM model, showcasing a Dice Similarity Coefficient (DICE) of 
0.974 compared to 0.665 for the watershed method, a Jaccard index of 0.949 versus 0.526, 
a Grain Count Accuracy (GCA) of 0.939 as opposed to 0.393, and an F-index of 0.974 
compared to 0.665. We then integrate the SAM method with micro-X-ray Fluorescence 
(XRF) analysis to correlate mineralogical and morphological data on a grain-by-grain 
basis. This approach has been tested at scale in a robot-enabled commercial laboratory. It 
is a significant improvement in analytical precision and operational efficiency in joint 
characterisation of mineralogy and morphology of samples for geologists, 
geometallurgists, and process engineers in the environmental and mining industries. 

 
1. Introduction 
 
The characterisation of the morphology of individual grains provides insight into the deposition 
system and environment of the sample, weathering processes, alteration (such as grain pseudo 
morphing), and mineralization (Boggs et al., 2012). Additionally, the characterisation of 
individual grains facilitates the examination of their distinct chemical attributes, thereby 
yielding a more comprehensive insight into the mineral’s composition. Geology is an 
observational science and in geological analysis traditional methodologies have relied on 
manual, on-site visual inspection and subjective classification of mineralogical samples. These 
approaches are time-consuming and are constrained by the human eye’s limitations in 
discerning subtle colours and textures within the visible spectrum (W. J. Shim et al.,2017). 
Additionally, these methods do not make optimal use of specialised human expertise, which is 
an increasingly scarce resource.  
 
Recent developments in scanning technologies and image analysis facilitate rapid, objective, 
and comprehensive data extraction, significantly enhancing the efficiency and reliability 
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of mineralogical data acquisition for use by geologists and geometallurgists. However, 
technological limitations persist, particularly in the accurate identification of grain borders and 
morphology when features overlap or are poorly defined (Balaram, 2021).  
 
X-ray fluorescent analysis (XRF) is a common method of mineralogical quantification due to 
its non-destructive, non-contact nature. State-of-the-art analysis uses micro XRF for large-
scale, robot-enabled, quantitative analysis of heavy mineral concentrates. The output is a 
detailed chemical analysis for each pixel in an image however there is, as yet, no published 
approach to directly link specific grains in the visual images with corresponding XRF mineral 
data. Addressing this issue is an industry imperative, as joint morphological and mineralogical 
characterisation of grains informs the geologist as to mineral deposit genesis and the 
geometallurgist considering mineral processing options. This case study addresses this need by 
presenting a segmentation model that enables grain-by-grain morphological quantification and 
a pipeline to associate micro XRF mineral data with specific grains in the image.  
 
2. Process 
 

 
 
Figure 1  Spectral and image analysis with alignment. 

 
Our approach is described in three parts, 1) sample preparation, 2) segment model selection 
process and 3) aligning the high-resolution grain image with the XRF mineral composition 
analysis. 
 
2.1 Sample Selection and Image Preparation 
 
First, a set of 10 test samples were selected using a design of experiments approach to cover 
variations in sample characteristics such as colour, morphology, and size. The goal being to 
challenge the robustness and flexibility of the segmentation algorithms. The samples are 
processed by an automated robotic system. Each sample of heavy mineral concentrate grains 
ranging from 300 to 100 microns in diameter is accurately weighed and placed on a white 
Teflon puck.  The sample is transferred to a Bruker M4 Tornado XRF analyser for detailed 
scanning. This scanning system produces 1) XRF chemistry result, and 2) a high resolution 
nine-image mosaic. The XRF data is then used to generate mineralogy maps. The location of 
the camera and therefore the coordinates of the centre for each image, as well as the bounding 
coordinates of the XRF scanning path, are recorded in the XRF coordinate system and 
documented in a log file. 
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As seen in Figure 1 the scanned XRF mineral data captures only a subset of the larger sample 
of grains, necessitating an alignment system to accurately identify the portions of each sample 
corresponding to the regions scanned by the XRF analysis. A referencing system was developed 
that utilises a distinct marker identifiable in both the contour map image and the scanned XRF 
mineralogy data. This marker was used to establish a scale between the two corresponding 
domains. A distinct blue marker is placed centrally in each of the nine mosaic images to 
facilitate precise image alignment. These images are then stitched together using a Binary 
Robust Invariant Scalable Keypoints (BRISK) algorithm. Following the stitching process, an 
object detection algorithm that utilises colour and circularity thresholds is deployed to identify 
the locations of the nine markers within the stitched grain image. This provides a set of new 
coordinates indicating the location of the markers within the stitched image coordinate space. 
 
2.2 Segmentation Model Assessment 
 
The baseline method used a conventional water segmentation technique using gradient and 
thresholding mechanisms along with a Euclidean distance-based marker system to define 
distinct regions within the image. The Euclidean distance transform is applied to a pre-
processed image to help generate markers at the centres of objects, which serve as the starting 
points for the flooding process (Chen et al., 2004). 
 
The challenger method uses DCNNs, specifically the SAM model from Meta AI Research. The 
SAM was chosen for its zero-shot performance and its training on a dataset of over 11 million 
images (Kirillov et al., 2023). Post-processing steps applied to the segmentation masks 
generated by the SAM model include identifying contours of the masks, isolating the largest 
contour, and assessing the area enclosed by the contour against predefined minimum and 
maximum thresholds, which the user sets to specify the desired size range of the grains of 
interest. 
 
For both approaches the detected contours of each grain are then used to identify the bounds 
within the coloured grain image for grain-by-grain colour analysis. This analysis averages the 
RGB values of all the pixels within the coloured image that are bounded by a grain's contour. 
The contours for each identified grain are used to generate the morphological characterisation 
of the grains. The morphological statistics calculated for each grain are area, perimeter, 
ellipticity, compactness, roundness and extent. Assessment of each approach is made using 
specificity, precision, accuracy, negative predictive value (NPV), and the F-Index scores plus 
two metrics commonly used in segmentation performance quantification, the Dice Similarity 
Coefficient (DICE) and the Jaccard (JAC) index. In addition, for each segmentation model, the 
particle count was taken and compared to the verified manual count of the grains. Adopting a 
similar approach to the Cell Count Accuracy (CCA) method a Grain Count Accuracy (GCA) 
metric was established. Details of the results are described in the results section. The SAM 
model was selected for the next phase of the work. The contours for each identified grain are 
then used to generate 1) the morphological characterisation of the grains (area, perimeter, 
ellipticity, compactness, roundness, and extent), and 2) averages for the RGB values of all the 
pixels within the coloured image that are bounded by a grain's contour. 
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2.3 Aligning the High Resolution Grain Image With the XRF Mineral 
Composition Analysis 
 
The coordinates in the image space corresponding to the detected markers are combined with 
the XRF process marker coordinates to calibrate an affine transformation across the two 
coordinate systems. This transformation is subsequently applied to the bounding coordinates 
provided by the XRF coordinate system, yielding an equivalent set of bounding coordinates 
within the stitched image space. These new bounding coordinates delineate the scanned area 
within the stitched image as defined by the affine transformation. The corresponding region of 
the grain image is then cropped and processed through our segmentation algorithm to obtain 
the segmentation masks of the grains. When these segmentations are superimposed onto the 
XRF mineralogy map, a translational discrepancy emerges between the detected grain positions 
and the mineral data points. This discrepancy is attributable to the incident angle of the XRF 
beam during analysis, which causes the XRF chemistry to project an offset representation of 
where the grains are located. A cross-correlation technique using fast Fourier transforms is 
utilised to account for the translational discrepancies between the XRF mineral data points and 
the locations of the detected grains. The process begins by generating a binarised image 
representation of the XRF mineral dataset, simplifying the depiction of minerals to indicate the 
presence or absence at specific locations. 
 
The identified region of interest from the stitched grain image, determined through the previous 
affine transformation, is processed through our segmentation model to determine the locations 
and masks of the grains. These segmentation masks are then binarised to indicate the presence 
or absence of grains at specific locations. Now, the XRF mineral data is captured at a 
significantly lower resolution, represented by a 90 by 90 grid of scanned data points, which is 
substantially coarser than the approximately 1250-pixel resolution of the binarised grain 
segmentation. This binarised grain segmentation is subsequently dilated using OpenCV's erode 
function with a 15 by 15-pixel kernel. This dilation effectively enlarges the black areas of the 
image (represented by zeros), reducing the visibility of finer features within the higher-
resolution grain segmentation. This adjustment helps the grain segmentation more closely 
resemble the lower-resolution, binarised XRF mineral dataset. By aligning the resolution 
characteristics of both datasets through dilation, the comparability is enhanced, which is ideal 
for effective cross-correlation analysis. 
 
Following the refinement of grain image alignment with the XRF mineral data, the mineral 
composition analysis is conducted using the segmentation masks of the grains to assign pixels 
to corresponding grains For each pixel within a grain, an assignment is made to the 
corresponding XRF scanned point. Each scanned point captures individual elemental counts 
and the resultant mineral. The frequency of these pixel assignments to various XRF scanned 
points is systematically accumulated for each grain, culminating in a detailed mineral and 
elemental composition profile for each grain within the sample. 
 
3. Results and Discussion 
 
Table 1 illustrates the averaged segmentation performance results for ten different samples for 
the following 1) particle count, DICE, JAC and GCA measures, and FI scores.  The SAM model 
consistently outperformed the Euclidean-based Watershed (EBW) in grain segmentation 
accuracy across all samples and performance metrics. The EBW model achieved its best results 
in scenarios with minimal particle aggregation and where the grain colours distinctly contrasted 
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with the background. Regarding particle count there is a significant improvement in SAM over 
the EBW model but it is not flawless so there is more work to be done in this area. 
 

 
 

 
In scenarios with dense particle aggregation and where grain colours closely resembled the 
background, the watershed model exhibited significant limitations in performance. Conversely, 
the SAM model demonstrated superior segmentation capabilities under these challenging 
conditions. For example, in the analysis of test sample 9, the SAM model achieved a DICE 
coefficient of 0.993, markedly higher than the 0.174 recorded for the watershed model, as 
detailed in Table 1. Similarly, the JAC and GCA indexes for the SAM model were 0.985 and 
0.979 respectively, compared to only 0.051 and 0.174 for the watershed model. This substantial 
difference in performance metrics demonstrates the robustness of the SAM model in handling 
this complex segmentation task compared to the traditional Waterfall model for this specific 
task. 
 
Aligning the XRF analysis and the image is a two-stage process because the affine 
transformation on its own revealed a pronounced bias towards the Y-axis. Specifically, the 
mean percentage shift on the Y-axis is significantly higher at 4.76%, compared to a much 
smaller mean shift on the X-axis of only 0.30%. This indicates a dominant translational shift 
predominantly in the vertical direction. An explanation for the observed bias in the Y-axis shifts 
could be attributed to parallax error, which arises from the angled positioning of the XRF 
camera relative to the vertical axis. Specifically, when scanning larger grains, the XRF signals 
may seem to originate from a specific point on the detection plate; however, they emanate from 
a point closer to the camera, located at the top of the grain. This can be seen in Figure 3. 
 
The impact on our analysis is mitigated by a cross-correlation method as previously described. 
This technique is applied to each sample, effectively correcting any translational discrepancies, 
whether they arise from parallax or other sources. The effectiveness of this correction is 
demonstrated in the subsequent Figures 3, 4, which highlight the alignment improvements 
between the XRF data and the grain images. The assessment is a qualitative one, future work 
will look at how to quantify this alignment. 
 
 

Table 1 Comparison of results for the Euclidean-based Watershed model and the Segment Anything model 
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4. Conclusions and Future Work 
 
This study has developed and compared two segmentation models, demonstrating that the SAM 
model significantly outperforms the Euclidean-based watershed method in delineating grain 
morphology within dense, homogeneous mineral aggregates and has an acceptable performance 
for this use case. We note that other groups involved in the mineral and grain processing sectors 
are also proposing SAM-based image processing 1) for particle size distribution over 
conventional mechanical sieve analysis and 2) with fine tuning for digital rock image physics. 
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Figure 2: Segment Anything 
model segmentation results. 

Figure 3: Segmentation data overlaid 
on the micro XRF mineral data. 

Figure 4: After cross-correlation 
alignment. 
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