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Abstract 

 
Magnificent Frigate Birds have been nesting on unmanned offshore platforms. The birds 
resting and roosting on the platforms pose significant operational risks, especially for 
helicopters. A general increase in bird population has also worsened the situation. To 
identify mitigation strategies, the first step is to understand the behavioural pattern of the 
birds. In this project, the aim is to utilise the available CCTV footage from the concerned 
platforms to identify machine learning techniques for Magnificent Frigate Bird detection 
and counting. The methodology of this project includes 1) identification and comparison 
of the state-of-the-art approaches to detection and counting problems; 2) frame extraction 
from videos and manual data labelling, and 3) fine-tuning the model to optimize the 
performance based on the accuracy of the bird counts. The deliverables of this project 
include a report, labelled data, source code, a trained model, and preliminary insights in 
the collected bird activity data. With this knowledge, bird dissuasion and relocation 
mechanism can be designed and implemented. This will reduce the likelihood of bird-
related incidents, thereby improving safety for operations and personnel on the platforms. 

 
1. Introduction 
 
1.1 Problem Statement 
 
Magnificent Frigate Birds (hereafter referred to as birds) shown in Figure 1 are large seabirds 
known for their impressive wingspan, reaching up to 2.3 metres. The birds are primarily black, 
with females and males exhibiting distinct characteristics. Females have a white chest and dark 
head, while breeding males are entirely black except for a bright red throat pouch, which may 
not always be visible (Cornell Lab of Ornithology, 2017).  
 
The primary site affected by bird activity includes five Wellhead Protector Platforms (WPPs), 
which are structures specifically designed to protect wellheads from environmental hazards and 
operational damage. Several of these platforms are of particular concern, as birds frequently 
rest and roost on them. Figure 1 shows a snapshot of the CCTV footage recorded at one of the 
helidecks. Bird activity significantly increases the risk to helicopter operations, particularly 
during critical and time-sensitive tasks such as medical evacuations (Medivac). The presence 
of birds raises the risks of bird-strike incidents, potentially leading to catastrophic outcomes, 
including loss of human lives. 
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Figure 1  A frame extracted from the CCTV footage showing bird activity on the 
helideck of an offshore platform. 

 
As a result, knowledge of the distribution and behaviour of birds is vital for the design and 
evaluation of mitigation strategies. Moreover, this understanding can help raise helicopter 
operator’s awareness of bird activities, leading to more effective and safer flight planning.  
 
1.2 Background Information 
 
To improve the safety of operations, the health of personnel, and environmental outcomes for 
birds, mitigation plans are in development. However, designing and implementing strategies 
presents risks and constraints, and data collection has not been systematic. Currently, there is 
no standardised bird detection and counting strategy; the identification of bird numbers and 
behaviour relies solely on human observation and interpretation. As a result, analysing the 
effectiveness of mitigation strategies and making targeted improvements and enhancements 
remains challenging. 
 
As the images for detection are sourced from CCTV footage covering the helideck, the birds 
appear quite small within the images. On average, each bird can be enclosed within a 45×45 
pixel bounding box. Therefore, the specific problem falls under the category of small object 
detection, a challenge in computer vision and machine learning. Recent advancements in these 
fields have shown promise in addressing such challenges. By leveraging these technologies, it 
is possible to develop automated systems for bird detection and counting, significantly 
enhancing the accuracy and efficiency of data collection with minimum human intervention. 
The problem of bird detection and counting can be addressed using two primary approaches: 
density map estimation and object detection. 
 
1.2.1 Density Map Estimation 
 
Density map estimation algorithms are primarily utilized for estimating the number of humans 
in surveillance video frames. According to the research by Lempitsky and Zisserman (2010), 
instead of focusing on detecting and localizing individual subject instances, a density map 
estimation algorithm reframes the problem by estimating image density over a given region and 
predicting the total count from that density map. This approach is particularly advantageous in 
highly congested scenes where the subjects are severely occluded.  
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1.2.2 Two-stage Object Detectors 
 
In two-stage object detectors, the first stage generates region proposals, extracting object 
regions independent of their classes. The second stage computes Convolutional Neural Network 
(CNN) features on these regions and classifies them. This approach was first proposed by 
Girshick et al. in the original R-CNN in 2014, using a selective search algorithm to extract 
around 2000 region proposals. However, R-CNN was computationally inefficient, as each 
proposal had to be processed separately through a CNN. 
 
Fast R-CNN, introduced by Girshick in 2015, integrated the region proposal and classification 
stages into a single network, using a Region of Interest (RoI) pooling layer to extract fixed-
length feature vectors from each proposal, thus improving efficiency. Faster R-CNN, proposed 
by Ren et al. in 2017, further enhanced this by introducing the Region Proposal Network (RPN), 
which shares convolutional layers with the detection network. The RPN generates region 
proposals that are refined and classified by the Fast R-CNN network, significantly improving 
both speed and accuracy. These advancements have made two-stage object detectors more 
practical for real-time applications. 
 
1.2.3 One-stage Object Detectors 
 
One-stage object detectors, like YOLO (You Only Look Once), introduced by Redmon et al. 
(2016), reframe object detection as a single regression problem. YOLO predicts bounding 
boxes and class probabilities directly from the image in one evaluation, significantly improving 
detection speed. YOLO runs at 45 FPS with a mean Average Precision (mAP) of 52.7%, while 
Fast YOLO achieves 155 FPS with a mAP of 63.4%. 
 
The evolution from YOLO to YOLOv10 has brought significant advancements. YOLOv2 
(Redmon & Farhadi, 2017) improved the original model by incorporating batch normalisation, 
anchor boxes and dimension clusters. YOLOv5 (Jocher, 2020) transitioned to PyTorch, 
optimizing model size and performance. YOLOv8 (Jocher et al., 2023) builds on the success of 
previous versions, offering even greater accuracy, efficiency and flexibility. The latest 
YOLOv10 (Wang et al., 2024) provides real-time object detection advancements by 
introducing an end-to-end head that eliminates Non-Maximum Suppression requirements.  
 
RetinaNet (Lin et al., 2018), another one-stage detector, introduced Focal Loss to address class 
imbalance, focusing on hard, misclassified examples. This is effective for detecting birds in 
CCTV footage, where birds are a minority class against the background.  
 
2. Methodology 
 
2.1 Data Collection  
 
The data used in this project consists of CCTV footage provided by the client. The footage is 
sourced from the concerned WPPs at different times, predominantly in the afternoons. There 
are a total of seven usable videos, and the total duration of these videos is 33 minutes and 3 
seconds. In this project, frames are extracted from the CCTV footage at a rate of 1 frame per 2 
seconds. This extraction rate is chosen for several reasons: redundancy reduction, as the CCTV 
footage has a frame rate of 600 FPS, where consecutive frames often contain redundant 
information. By extracting 1 frame every 2 seconds, the extracted frame is likely to contain new 
information about bird activities. It also makes the annotation process more efficient, as 
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annotating every frame from high-frame-rate footage would be extremely labour-intensive and 
time-consuming. Reducing the number of frames to be annotated makes the manual labelling 
process more efficient. Additionally, this rate achieves a balance between data volume and 
processing efficiency. From a total video length of 33 minutes and 3 seconds, extracting frames 
at this rate will produce 969 images, generating a sufficient amount of data for training while 
maintaining manageable data volumes.  
 
2.2 Data Labelling and Pre-processing 
 
Manual data labelling is crucial for creating a high-quality dataset that is essential for effective 
model training and accurate predictions. Each bird in the extracted frames is annotated with a 
bounding box using CVAT. While time-consuming, this step is critical for model accuracy. 
 
After labelling, image tiling is applied as a pre-processing step. High-resolution images are 
divided into smaller, overlapping tiles to increase the relative size of birds, preserving detail 
and enhancing the detection of small objects that might be missed in full images.  
 
To further enhance model robustness in real-world scenarios, data augmentation is performed. 
Techniques such as rotation, flipping, scaling, random distortion, and colour adjustments 
generate diverse variations of each image, reducing model overfitting and improving 
generalization to unseen data. The full data preprocessing pipeline is shown in Figure 2. 
 
2.3 Model Training and Refinement 
 
After data augmentation, the selected models are trained on this enhanced dataset. The model 
considered include Faster R-CNN (Ren et al., 2017), RetinaNet (Lin et al., 2018) and YOLOv8 
(Jocher et al., 2023), which are state-of-the art object detection models. The training process 
includes several key steps. First, transfer learning is utilised, which involves using pre-trained 
models on larger datasets like COCO to expedite training and enhance accuracy. Next, 
hyperparameter tuning is employed, using grid search or random search techniques to find the 
optimal settings for learning rate, batch size and training epochs. Regularization and 
checkpointing are also implemented to prevent overfitting and ensure the best model is saved 
during training.  
 
2.4 Model Comparison and Evaluation 
 
Model comparison of the selected models will be conducted to evaluate their performance. The 
best model will be chosen based on its accuracy in counting birds and its consistency across 
different environments. The evaluation will focus on metrics such as mean Average Precision 
(mAP) and mean Average Recall (mAR), which measure the average precision and recall across 
all object classes and various Intersection over Union (IoU) thresholds. 
 
This comparison will provide insights into how different models perform on our dataset, 
guiding the choice of a best model. Efficiency and extensibility will also be considered, which 
allows for potential upgrades to a real-time detection and counting system.  
 
Finally, the best fine-tuned model will be used to analyze the CCTV footage and collect bird 
counts over time. The results will be visualized, including a line chart showing bird counts over 
24 hours, to clearly demonstrate the method's effectiveness and the types of insights it can 
provide. 
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Figure 2  The image is divided into overlapping tiles (20% overlap) for model 
training, followed by data augmentation. Detections from each tile are 
then merged to improve small object detection. 

 
3. Results and Discussion 
 
The Faster R-CNN model with MobileNetV3-Large FPN backbone was evaluated for bird 
identification and counting in CCTV footage. Its performance was measured by accuracy, recall, 
and speed. The model achieved a mean Average Precision (mAP) of 31.4% across Intersection 
over Union (IoU) thresholds from 0.5 to 0.95. These thresholds represent increasing levels of 
required overlap between predicted and actual object locations, with 0.5 being lenient and 0.95 
demanding near-perfect alignment. The mean Average Recall (mAR) was 39.1%, reflecting its 
ability to detect birds. Additionally, at an IoU threshold of 0.5, the model reached 81.3% 
accuracy in counting birds. The model processed each image in 366 milliseconds on average, 
analysing nearly three images per second. These results are summarised in Table 1. 
 

Metric Faster R-CNN 
mAP@[.5: .95] (%) 31.4 
mAR@[.5: .95] (%)  39.1 
Count accuracy (%)  81.3 
Avg. Inference Time (ms) 366 

 
Table 1  Performance metrics of the Faster R-CNN model, presenting accuracy 

(mAP, mAR) and speed. 
 
These preliminary results demonstrate a balance between accuracy and speed. Potential 
improvements include hyperparameter tuning and testing different backbones. As training 
continues, these metrics may improve, and further comparisons with other models like 
YOLOv8 and RetinaNet will help identify the most suitable model for accurately detecting and 
counting birds in CCTV footage. 
 
The original Faster R-CNN with VGG-16 backbone achieved 42.1% accuracy at lower IoU 
thresholds and 21.5% at stricter thresholds, processing images in 200 ms each. This comparison 
highlights potential for optimizing the current model's accuracy and efficiency. 
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4. Conclusions and Future Work 
 
This project aims to develop an accurate and efficient bird detection model using CCTV 
footage. Leveraging state-of-the-art object detection models such as Faster R-CNN, RetinaNet 
and YOLOv8, the goal is to accurately identify and count birds for further analysis. Current 
results are preliminary, with ongoing training focused on improving accuracy. The next phase 
involves completing model training and obtaining final results. It is anticipated that continued 
training and optimisation will enhance the model’s performance. Future work includes 
implementing semi-automatic labelling techniques to streamline the annotation process, 
potentially reducing manual effort and improve labelling accuracy. This approach could 
significantly accelerate dataset preparation for future iterations. 
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