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Abstract 

 
This study was conducted on behalf of a large Australian mining company. The company 
operates a rail system and has 48,560 ore car wheel sets in service. During service the 
ore car wheels experience deterioration and damage. The damaged material layer is 
machined out of the wheels at fixed maintenance intervals to prevent any damage to the 
track and/or ore car. Currently the company machines wheels to two different standards 
at two separate maintenance locations. The maintenance of the steel wheels represents a 
substantial cost for the company both from the machining process and the associated 
operational disturbances.  
 
The purpose of this project was to make informed recommendations about the optimum 
depth of cut and machining interval to reduce overall wheel maintenance costs. The key 
objectives of the project were; to analyse wheel degradation rates and modes, find the 
optimal wheel maintenance interval, determine the optimal amount of steel that can be 
removed from the wheel and provide a cost analysis to determine the most cost effective 
wheel maintenance strategy. Wheel degradation rates and modes were determined 
through analysing wheel wear data from the Ore Car Condition Monitoring System 
(OCCM), while subsurface wheel defects were analysed in the laboratory using Scanning 
Electron Microscopy (SEM). 

 
1. Introduction 
 
During service heavy haul ore car wheels are subject to high mechanical loading, frictional 
forces, cyclic loading and rapid heating cycles that occur during braking. These factors all 
contribute to increased rates of wheel deterioration. Typically, damage is in the form of 
thermal and fatigue cracking, rolling contact fatigue, spalling, hollowing and scaling. The 
wheels are also subject to flange wear and subsurface defects that initiate from metallurgical 
defects in the wheel (Transport RailCorp 2013).  
 
The re-profiling of wheels is a costly but essential process. Defective wheels may cause 
damage to both the track and the ore car and in severe cases have been known to cause train 
derailment (Transport RailCorp 2013). The high costs arise from not only the actual 
machining process but also the operational disturbances associated with the shunting of ore 
cars and the downtime of the ore cars during the wheel machining process.  
Currently the company machines wheels to two different standards at two separate locations. 
At the first maintenance facility a standard 2.5 mm is taken off the rim of the wheel, where 
the wheel rim is measured from the centre of the wheel (70mm from the rim back). At the 
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Figure 1a. Witness Groove Machining (AAR 
Standards 2012) 

second facility 2 mm is machined off the wheel rim from the same reference point. The depth 
of cut significantly impacts wheel life as wheels are scrapped based on rim size.  The depth of 
cut taken at the machining facilities increases significantly with flange size, which 
corresponds to the thickness of the flange. A flange size 0 is a ‘good flange’ and larger flange 
numbers indicate a thinner flange.  
 
The AAR standards (2012) provide a guideline for the amount of material to remove from 
heavy haul train wheels using a flange witness groove. The witness groove serves the purpose 
of showing that the lathe operator has not wasted service tread by turning more off the tread 
than necessary to restore the full flange contour. A wheel gauge is used to determine the depth 
of cut, the pointer circled in Figure 1a indicates the amount of metal to be machined off with a 
witness groove to restore full flange contour.  

 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
The flange size indicated by the pointer is supposed to determine the amount of necessary 
metal to be removed from the rim in 1/16 inch increments to restore flange profile. However, 
much larger cuts are currently being taken than recommended by the standard. For example, a 
flange size 1 would indicate that 1/16 of an inch, or 1.6 mm needs to be machined off the rim 
to restore the flange; however, the company removes 3.5 mm. This approach was taken by the 
company to ensure all tread defects were removed from the wheel before the wheel was put 
back into service. However, the optimal amount of material to remove tread defects has not 
been investigated.  
 
The mining sector is currently facing very challenging market conditions. At this point in 
time, the company is spending a large portion of their annual ore car maintenance budget on 
wheel maintenance. The optimisation of the machining process and maintenance intervals 
could result in greater efficiencies, a reduction in operating costs, an increase in returns and 
an improvement to the company’s competitiveness.  
 
The key project objectives are listed below:  
1. Provide the Client with further insight into wheel degradation rates and modes.  
2. Determine the depth of subsurface defects for wheels and the minimum amount of 

material that can be removed from the wheels to remove these defects  
3. Determine the impact of maintenance interval on wheel life costs 
4. Develop a cost analysis to draw conclusions about the optimal wheel maintenance 

strategy 
 

Figure 1b. Close up of NF pointer 
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To support conclusions regarding the optimal wheel maintenance strategy, the wheel 
degradation rates and modes had to be understood. Through understanding how the wheel was 
deteriorating over time, conclusions could be made about the optimal point to machine the 
wheels to maximise wheel life and minimise cost. Subsurface defects were analysed through 
microscopy and microanalysis techniques to determine the depth of tread damage for 
moderately damaged wheels with spalling. Furthermore, minimum cut trials were conducted 
to determine if a smaller depth of cut could remove all surface defects. The project also 
involved drawing conclusions about whether the current maintenance interval is optimal. A 
cost analysis was conducted to compare different maintenance regimes and guide the 
formulation of future machining procedures. 
 
2. Methodology 
 
2.1 Analysis of Wheel Degradation Rates  
 
To be able to analyse the wear of wheels over time, data had to be extracted from the Ore Car 
Condition Monitoring System (OCCM). The OCCM system allows for the accurate 
measurement of ore car wheels, as each wheel passes by the system, optical sensors 
automatically trigger an asynchronous image grab. The wheel profile computer then processes 
the image and returns key outputs including; rim thickness, flange width, tread hollowness 
and flange height. The location of these feature points are shown below (Figure 2) 
 

 
Figure 2. Location of feature points (MRX 2009) 

The OCCM system is equipped with an automatic train identification system (ATI) that is 
able to detect the presence of a train and identify individual ore cars. There is no system that 
tracks what wheels are under what wagons at a given point in time. This means that a single 
wheel cannot be tracked over its lifetime. However, through analysing data for a particular 
wagon number, axle position (1-8) and side (L/R) the measurements for a single wheel can be 
analysed between machining cycles. Currently the wheel sets are machined on a two year 
planned maintenance period allowing for the analysis of two years of wheel data where 
measurements are taken several times each month. Wagon maintenance history was utilised to 
determine the date that a given wagon with freshly machined wheels left the workshop. This 
allowed for wheel wear over time to be analysed. 
 
142 wheels were analysed, these wheels were evenly distributed with respect axle number (1-
8) and ore car side (Left/Right). The sample was also evenly distributed across three rim size 
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categories, end of life wheels (29 – 42.24mm), midlife wheels (42.25 – 56.25mm) and new 
wheels (56.25 – 70mm). Linear regression techniques were then applied in R to draw 
conclusions about wheel degradation rates.   
 
2.2  Analysis of Subsurface Wheel Defects 
 
Scanning Electron Microscopy (SEM) and Electron Dispersive X-ray Spectrometry (EDS) 
training courses were completed at the UWA Centre for Microscopy, Characterisation and 
Analysis (CMCA). In order to analyse wheel defects and characterise the steel inclusions, 
entire wheelsets were transported from site to Gemco Rail where they were stored and cut 
into manageable sized sections for analysis.   
 
2.3  Comparison of Wheel Maintenance Strategies 
 
A cost analysis was completed and wheel machining strategies were compared. Discounted 
cash flow analysis was used to discount future cash flows and arrive at a present value 
estimate.   
 
3. Results and Discussion 
 
3.1 Statistical Analysis of Wheel Degredation Rates and Modes  
 
A strong negative linear relationship was found between rim thickness (mm) and time in 
service (years). A scatter plot of all the rim thickness data over time is shown in Figure 3. The 
data for several individual wheels are highlighted to demonstrate the negative linear 
correlation between rim thickness and years in service.  
 

 
Figure 3. Scatter plot demonstrating rim wear 

 
Each wheel in the sample starts with a discrete rim thickness that decreases linearly with time 
in service. The linear regression found a wear rate of -2.39 mm/year, the r-squared value (R2) 
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found was high (0.98) showing low variability in the data. No significant difference between 
the wear rate was found based on vehicle side (left/right) and axle position (1-8).  
 
Hollowness was found to occur in 43% of wheels and had a mean initiation time of 1.43 
years. The maximum hollowness found after two years was 1.5 mm, this is below the 3 mm 
upper limit proposed by the RailCorp Standard (2013) suggesting this hollow does not 
negatively affect performance or rail life. Hollowness does not increase the amount of 
material to machine off a wheel, so this high percentage of wheels with hollowness may not 
be a concern for the Client (Frohling & Hettasch 2010).  
 
Flange thickness is an important wheel parameter to consider as it determines the amount of 
material that must be removed from the wheel to restore the profile. Only 1.4% of the wheels 
were found to have flange wear that would require a deeper cut to restore rim profile.  
 
3.2 Electron Microscopy Analysis  
 
For microscopy analysis, the sample was mounted such that the damaged tread surface was 
perpendicular to the microscope. This allowed the microscope to capture the depth of damage 
into the wheel tread. Cracking can be seen propagating into the wheel rim with a maximum 
cracking distance of 1.7 mm from the surface of the tread in sample 1 (Figure 4). More 
electron microscopy analysis must be completed to determine the depth of damage for other 
defects. 
 

 

 
Figure 4: Image of Wheel Tread 

 
3.3 Comparison of Wheel Maintenance Strategies  
 
Wheel maintenance strategies were then compared to determine the strategy that maximised 
wheel life. Any increase in wheel life has the potential to lead to significant cost savings. 
Under the current practice, wheels start at a size 44 (970 mm diameter) and are scrapped if 
they are less than a size 18 after machining (888 mm diameter). This leaves 82 mm of tread to 
be used before the wheel has to be scrapped. 
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Figure 5: Comparison of Wheel Maintenance Strategies 

A comparison of all feasible maintenance strategies is represented in Figure 5. A 2mm cut 
every two years is seen to maximise wheel life.  
 
4. Conclusions and Future Work 
 
Under the current strategy, rim wear occurs at a rate of approximately 2.39 mm/year. Rim 
wear was determined to be independent of wagon side (left/right), axle number (1-8) and 
wheel age.  No acceleration in rim wear was observed over time, suggesting that the two-year 
wheel maintenance strategy is viable. Hollowness was found to occur in 42% of wheels and 
had a mean initiation time of 1.43 years. Only 1.4% of the wheels were found to have flange 
wear that would require a deeper cut to restore rim profile. The electron microscopy analysis 
found that the maximum damage depth was 1.7 mm for a moderately damaged wheel with 
spalling. However, only two samples were taken to conduct this analysis. 
 
The wear rates and modes were examined for a sample of 142 wheels with two years of data. 
This sample size could be increased to more accurately reflect the wear rates of the 
population. The electron microscopy analysis found that the maximum damage depth was 1.7 
mm for a moderately damaged wheel with spalling. In order to determine the maximum depth 
of damage for wheels with spalling more samples should be analysed using SEM.  
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