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Abstract  

 
Given the importance of radio auditing for mining industry radio communication in terms 
of safety and efficiency, and opportunities for performance evaluation and management 
in Integrated Remote Operations Centres, the process has not been well developed, 
relying on manual auditing. The project is to provide a partial solution to the automation 
of radio auditing, where a keyword spotting program will be developed with training 
using historical radio recordings obtained from industry. A completely unsupervised 
method is applied for keyword spotting from audio recordings, which serves as the 
foundation for automated auditing for radio data without transcription. In this 
application of Positive Communications analysis, the audio data contains strong accents 
and multiple speakers. Before applying the model to industry historical data, testing of 
algorithm has been conducted on clean TIMIT corpus data, the results of which are 
illustrated in this paper to show the proof of concept. 

 
1. Introduction 
 
Radio has been widely used as a major communication channel in the resource industry. Only 
since the recent implementation of Integrated Remote Operations Centres (IROCs), has radio 
communication been made remotely available in one central location for auditing and 
performance management purposes.  
 
Specific content, such as Positive Communications, is of interest in the radio auditing process. 
Compliance with Positive Communications protocols is of significant importance to the safety 
of traffic in the industry, as it requires the intention and confirmation between drivers to be 
clearly stated and understood when interactions between vehicles take place.  
 
Currently, auditing radio recordings for Positive Communications requires the auditing 
personnel to manually select relevant recordings from a large historical database and judge 
their adherence to the protocol. The process can be very time-consuming, and prone to 
inconsistency and human error, with only a small portion of interactions being audited as 
evaluation samples to infer the overall performance.  
 
Automation of radio auditing would provide a solution to replace manual auditing, offering 
higher efficiency, standardisation, easier performance management and extended application.  
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One of the biggest challenges for the automation process is that the historical radio data has 
no transcription available. Early research and testing also revealed that Automatic Speech 
Recognition (ASR) followed by text mining is not feasible due to accent, jargon and 
identifiers that are specific to the domain.  
 
Therefore, before the development of the decision-making process, the content of interest 
need to be automatically identified from the audio recordings, which also contain irrelevant 
data. Moreover, the appearance or absence of certain keywords and phrases can directly 
facilitate the identification of protocol compliance or breach. Due to time constraint, this 
project aimed to explore possible solutions to identify spoken keywords relevant to Positive 
Communications under a completely unsupervised environment without any annotated or 
transcribed speech data. 
 
1.1 Literature Review 
 
Formally, searching for spoken keywords relevant to specific content of interested is referred 
to as Keyword Spotting (KWS) or Spoken Term Detection (STD). Under circumstances 
where labelled training data is limited or absent, the query-by-example (QBE) STD method 
provides a solution to search audio databases using audio queries (Hazen, et al., 2009).  
 
The QBE method originated from template matching, where examples of the target spoken 
terms are in the form of spoken queries (Mandal, et al., 2014). After both the query and test 
utterance are converted to template representations, dynamic time warping (DTW) is 
generally employed to measure the differences between templates (Mandal, et al., 2014). 
 
Early template matching relied on a typical speech feature vector, Mel-frequency cepstral 
coefficients (MFCCs), but suffered in the presence of multiple speakers or environment 
changes (Hazen, et al., 2009). To address the problem, recent research proposed novel 
posterior features for representation of the speech signal with some promising results 
(Mandal, et al., 2014). Among various posterior features, Hazen and colleagues examined 
phonetic posteriorgram representation in 2009. Their work did not require transcription of the 
audio files, but required a phonetic recognizer to be independently trained (Hazen, et al., 
2009). Zhang and Glass then proposed Gaussian posteriorgram from Gaussian Mixture Model 
(GMM) for template representation, which is speaker-independent and does not require any 
transcribed data (Zhang, 2013; Zhang & Glass, 2009). Using the Gaussian posteriorgram and 
segmental DTW to detect the occurrence of keywords in the utterance, the performance was 
evaluated on both TIMIT Acoustic-Phonetic Continuous Speech Corpus (referred to as 
TIMIT corpus) and MIT Lecture corpus, exhibiting comparable results to methods requiring 
some supervised training (Zhang & Glass, 2009). 
 
2. Methodology 
 
The project therefore adopted GMM posteriorgram for template representation of both audio 
queries and test utterances, followed by template comparison based on the DTW method. The 
frame work from signal input to DTW search is shown in Figure 1. 
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Figure 1  Framework of algorithm 

 
A single GMM is firstly trained using all data, using MFCC features of the speech signal as 
input to model the probability distribution of speech data as a weighted linear combination of 
Gaussian components. The trained GMM is then used to produce a Gaussian posteriorgram 
for each keyword and test utterance. With a speech utterance of 𝑛 frames denoted as  
𝑺 = (𝑠&, 𝑠(, … , 𝑠*), the Gaussian posteriorgram is defined as 
 

𝑮𝑷 𝑺 = (𝑞&, 𝑞(, … , 𝑞*) 
 

𝑞/ = (𝑃 𝐶& 𝑠/ , 𝑃 𝐶( 𝑠/ , … , 𝑃 𝐶2 𝑠/ ) 
 
where 𝐶/ is the 𝑖45 of 𝑚 Gaussian components (Zhang & Glass, 2009). 
 
Comparing the posteriorgram of 𝑁-frame query and that of the 𝑀-frame test utterance results 
in a 𝑁×𝑀 similarity matrix (Mandal, et al., 2014). Using DTW search, the optimal alignment 
path (warp path) through the similarity matrix can be found, which indicates the overall 
difference between the target keyword example and the test utterance by DTW distance 
(Hazen, et al., 2009). The extent of match, shown by the DTW distance falling within a 
threshold value, reflects the presence of the keyword. By calculating the similarity matrix and 
finding the path of minimum cost, the optimal path is able to identify the existence and 
location of the keywords. 
 
To verify the feasibility of concept and validate the model, the constructed model was firstly 
applied to data from TIMIT corpus. The TIMIT corpus was designed and recorded at Texas 
Instruments, Inc. (TI), transcribed at Massachusetts Institute of Technology (MIT) and 
verified and prepared for CD-ROM production by the National Institute of Standards and 
Technology (NIST) (Garofolo, et al., 1993). With a total of 6,300 sentences recorded by 630 
speakers of eight major dialects of American English, the TIMIT corpus is a rich collection of 
phonetic data, and was designed for development and evaluation of speech recognition 
systems (Garofolo, et al., 1993; Zue, et al., 1990).  
 
3. Results and Discussion 
 
3.1 DTW Comparison Between Keywords 
 
The functionality of dynamic time warping algorithm was firstly verified by inputting a 
keyword and comparing it with itself. Since two inputs for the DTW are exactly the same, it is 
expected that the DTW cost should be 0. One example DTW comparison plot for keyword 
sample 1 from (‘warm01.wav’) is shown in the left figure in Error! Reference source not 
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found., where the symmetry along the diagonal warping path can be observed with total cost 
equal to 0. This result is consistent with expectation.  
 
Comparing different keyword samples (sample 2 and sample 3) of the same keyword ‘warm’ 
yields the following similarity matrix plots. The costs are 22.966 and 11.681 respectively. On 
the right-hand side of Figure 2, the plots illustrate the DTW warping path of posteriorgram 
representations of keyword sample 1 comparing with that of keyword sample 2 and 3 
respectively.  

 
Figure 2  DTW comparison of GP representations of keyword sample 1. The 

left figure shows the DTW result for keyword ‘warm’ sample 1  
compared with itself. The middle and right figure show the result 
for posteriorgram representations of keyword sample 1 compared 
with that of keyword sample 2 and 3. 

 
3.2 DTW Comparison Between Keyword and Corresponding Utterance 
 
After the functionality of DTW is verified by similarity comparison between keywords, the 
second step is to compare the keyword with its corresponding utterance. In other words, a 
certain part of the utterance is exactly the same as the keyword sample, which results in the 
same Gaussian Posterior (GP) representation. Therefore, that particular region in the cosine 
similarity matrix should be identified by the dynamic time warping path. One example test 
using keyword sample 1 from ‘warm01.wav’ and its corresponding test utterance 
‘u_warm01.wav’ yields the DTW warping path as shown in Figure 3, with its enlarged 
identifying region on the right.  

 
Figure 3  DTW Plot of keyword posteriorgram representation comparing 

with that of its corresponding test utterance 
 
As can be seen from  

 
Figure 3  DTW Plot of keyword posteriorgram representation comparing with that of its 
corresponding test utterance, the corresponding keyword section in the utterance was 
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efficiently identified. Further verification was conducted by manually identifying the keyword 
region in the utterance using PRAAT. 

 
Figure 4  PRAAT plot of utterance clip with keyword region selected 

 
Figure 4 shows that the keyword region (from about 1.93s to 2.28s was consistent with the 
identified region in DTW of the GP representations plot.  
 
3.3 DTW Comparison Between Keyword and Different Utterance 
 
The next step is to test keyword identification by using keyword query for a different 
utterance. The keyword sample was recorded by a different speaker having a distinct accent 
compared to that of the utterance sample. Since the GP representation should capture the 
feature of keywords regardless of the speaker, the same region in utterance-keyword 
similarity matrix plot is expected to be spotted. One example test between keyword sample 2 
and test utterance ‘u_warm01.wav’ produced DTW plots as shown in the top figure of Figure 
5. The bottom figure in Figure 5 shows the result for similar comparison between the test 
utterance with the third keyword sample.  

 
Figure 5  DTW plot between keyword sample 2 and test utterance 1 (top) and 

that between keyword sample 2 and test utterance 1 (bottom) 
 

Both DTW plots in Figure 5 exhibit efficient spotting of the keyword region over the search 
of test utterance, which is consistent with expectations and verifies the functionality of 
algorithm.  
 
3.4 Remaining Issue of the Algorithm  
 
Despite the successful detection of keyword samples for some experiments, in some cases, the 
keyword region was missed by the warping path, due to the presence of other highly similar 
regions. One of the examples of such a case is shown in Figure 6. 
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Figure 6  Example case where the keyword region (labelled with rectangle) is 

missed by DTW warping path  
 

4. Conclusions and Future Work 
 
Current progress has shown promising results for the identification of spoken query, which 
verified the concept and validated the algorithm model. To solve the current issue, a sliding 
window to restrict the search width will be applied to compare keywords template and part of 
utterance template sequentially. 
 
After the issue is resolved, the constructed model is to be applied to the audio recordings of 
radio communication from industry. Once the algorithm properly identifies the keywords, an 
utterance based detection equal error rate can be employed to evaluate the keyword spotting 
outcome. Recommendations for future development of decision making process and 
implementation of the radio auditing automation will also be outlined.  
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