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Abstract 

 
The installation and wiring of instrumentation currently presents a significant cost to the 
Water Corporation. The use of wireless alternatives could potentially mitigate this cost; 
however, this introduces the maintenance requirement of battery replacement every 1-10 
years. As the Internet of Things is a growing technology space, it is logical to focus on 
small, low power solutions. Energy harvesting for low power wireless sensors has the 
potential to supplemental or perhaps completely negate the requirement for batteries. This 
project seeks to provide a framework for determining the available operating time of an 
energy harvesting wireless sensor, using input parameters common to any predictable or 
controlled energy source, sensor types or wireless technology. The work is presented in the 
context of a Water Corporation case study, considering solar energy and using test 
hardware for the verification of results.  

 
1. Introduction 
 
Installation and the wiring of instrumentation is currently a significant cost to the Water 
Corporation. Wireless sensor networks can be used to provide data monitoring for sites and 
locations that are generally not easily accessible, or for which wiring of traditional 
instrumentation would be costly or impossible. There is however a problem introduced by such 
sensors; the need for power. Traditional wireless sensors typically run from batteries that 
require replacement after 1 – 10 years, depending on conditions (Vullers et al. 2009). The 
replacement of just a few batteries may not prove a large expense, however if a significant 
number of these sensors are in the field then battery replacement will become a regular 
occurrence. 
 
A solution to the battery problem for wireless sensors is to employ energy harvesting 
techniques, to either supplement or completely replace the need for onboard energy storage. 
Energy harvesting uses ambient available energy such as radio frequency, solar, piezoelectric 
and thermoelectric (Vullers et al. 2009) (Shaikh & Zeadally 2016). The amount of power 
available from these sources is typically rather small, so systems designed to work with such 
harvesters must be constructed with low power applications in mind, overengineering the 
solution is undesirable. With the increasing interest in energy harvesting and the potential to 
investigate many different harvesting technologies, it is important to develop a methodology 
for determining potential performance of any harvesting technologies. The contribution of this 
project is to propose a general framework that can take input parameters of different energy 
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sources, sensors, or wireless transceivers and provide constraints on the available operational 
time, given a secondary energy storage element. 
 
Various potential site applications have been identified from within the Water Corporation, and 
the key parameters from these have been synthesised into a case study. The application under 
consideration is asymmetrical point-to-point transmission over approximately 500 m, sensing 
pressure and converting this to a ground based water tank level measurement using solar as the 
energy source. Several sites have been identified for obtaining typical solar irradiance levels 
during the design stage. At this stage it is unknown what kind of transmission schedule a low 
power sensor in such a setup would be able to maintain. 
 
The current state of the art in capacity planning for energy harvesting wireless sensors involves 
the prediction of the available harvestable energy given inputs (power, duration) and outputs 
(V,I, duration). The most prominent form being solar exposure prediction models (Diagne et 
al. 2013). The requirement for having energy availability data is that the energy source must be 
either controlled and predictable or uncontrolled and predictable (Buchli et al. 2014). Beyond 
the power consideration, the rest of the system design is often conducted in an ad-hoc method 
and heavily coupled with the specific design requirements of the project being undertaken. 
 
2. Methodology 
 
The proposed energy harvesting wireless system under consideration in the case study is shown 
in Figure 1.  Given the already large design scope associated with this project, the energy source 
chosen to harvest was solar.  This was done both based on the ease of obtaining small solar 
panels as well as the availability of solar data which could be used to evaluate the model.  The 
choice of microcontroller and sensor were made to reflect typical low power hardware found 
in the literature (Wu, Rudiger & Yuce 2017) and the LoRa wireless transmitter was chosen for 
its low power and long-range capabilities (Augustin et al. 2016). The whole system is designed 
to run on 3.3 V to further lower power consumption compared with traditional 5 V systems.  
State of the art energy harvesting is strongly dependent on the type of integrated circuit (IC) 
chosen to manage the power. The energy harvesting IC selected was the Linear Technology 
LTC3106, a DC-DC low start-up voltage Buck-Boost converter. This IC was selected as it was 
suitable for photovoltaic (PV) inputs was able to supply a regulated output voltage of 3.3 V, 
and charge a secondary storage element when excess energy is available. 
 

 
Figure 1  Schematic of energy harvesting wireless sensor 

 
To model the predicted behaviour of the energy harvesting wireless sensor a modular system 
was developed in Python, consisting of four separate modules as shown in Figure 2. With each 
module representing a different logical component of the system, the load, the energy 
availability, the storage element and the energy harvester. The motivation behind structuring 
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the model as such is to allow for the future reusability of the system, potentially using 
alternative harvesting, wireless, or energy storage technologies. 
 

 
Figure 2 Wireless sensor block diagram of modules 

 
2.1 System Load Model 
 
The sensor, wireless transceiver and microcontroller can be grouped together as the components 
providing the load in the circuit. For wireless sensing applications, it is useful to divide the load 
profile up into four general states. Sleeping, waking, sensing/processing and 
transmitting/receiving. Figure 3 shows the power draw of the system as measured during a 
measurement, processing and transmission cycle as measured for the system in Figure 2. 
 

 
Figure 3 Power consumption in a single measurement and transmission cycle 

showing sleep, waking, sensing and transmission 
 

The load module provides the output parameters, Psleep, Pwake, PTX, Psense/proc subsequently used 
in the model developed, where each parameter represents the power at their respective state as 
shown in Figure 3.  In addition the parameters tsleep, twake, tTX, tsense/proc, representing the total 
amount of time spent in each state during a cycle are also used as parameters within the model. 
 
2.2 Energy Availability 
 
As the case study considers the use of solar energy, a model must be used for predicting the 
available solar energy at select locations; two methods are considered here. The first is to 
consider the global solar exposure at select locations from historical data available from the 
Bureau of Meteorology as an indicator of future solar energy availability. The available solar 
energy may also be modelled using slightly more sophisticated techniques, such as  the 
modified astronomical model which, despite still being relatively simple, has been found to 
accurately predict harvestable solar energy, allowing for up to 53% smaller batteries than the 
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previous state-of the art (Dave, Halpern & Myers 1975; Buchli et al. 2014). In this model the 
total energy is a function of: 
 

𝐸"#$%& ∙ = 𝐸#)* 𝑑, 𝑡, 𝐿, 𝜙0, 𝜃0, 𝜏 + 𝐸#45 𝑑, 𝑡, 𝐿, 𝑘, 𝜃0, 𝜏 + 𝐸7*8 𝑑, 𝑡, 𝐿, 𝑘, 𝑅, 𝜃0, 𝜏  
 
Where 𝑑 is the day of the year, 𝑡 is the hour of the day, 𝜙0 is the azimuth angle, 𝜃0 is the other 
inclination angle and τ, 𝑘, and 𝑅 are dimensionless characteristics of the absorbent gases in the 
atmosphere. The contribution of diffuse sky radiation is given by 𝑘, the atmosphere’s optical 
thickness by, 𝜏, and the reflective properties of the ground by 𝑅. Using either the Astronomical 
model, or historical data, the final parameter passed from the energy availability is: 

𝐸:* = 𝐸	
  ×𝜇>??×𝐴 
Where 𝐸(𝑊/𝑚E) is the predicted solar energy, 𝜇>?? is the photovoltaic panel efficiency, and 
𝐴	
  (𝑚E) is the area of the panel. 
 
2.3 Energy Storage 
 
The transfer of energy from harvester to battery storage has been shown to be quite complicated, 
with several models in the literature able to predict charge and discharge behaviours (Ferry et 
al. 2011) . In this work a simple battery charging method has been used to identify the key 
issues (Castagnetti et al. 2012). The energy storage element is modelled simply, using the 
parameters Bmin (mAh) for the minimum capacity the storage element must maintain and Bnom 
(mAh) for the nominal battery capacity. To attempt to account for inefficiencies when charging 
and discharging the battery some previous works have used efficiency factors for scaling, ηbatin 
and ηbatout , with loses from internal resistance and electrochemical processes being represented 
by ηbatin (Buchli et al. 2014).  
 
2.4 Energy Harvesting Model 
 
The harvesting model takes the load inputs to account for the energy required for a single 
measurement, process and transmit cycle: 
 

𝐸G&"8(𝑡) = P#G>>0𝑡#G>>0 +	
  PI"4>𝑡I"4> + P#>*#>/0%&J𝑡#>*#>/0%&J + PKL𝑡KL 
 
Inefficiences in transfering to the input energy to the load and to the storage are considered by 
VIN efficiency, ηNOP, and VSTORE efficiency, ηvstore as given on the datasheet for the LTC3106. 
Using a similar approach to (Buchli et al. 2014), at a given time the available energy stored 
energy is: 

𝐸#$&%> 𝑡* = 	
  𝐸#$&%> 𝑡*QR 	
  + ηNSTUVWηbatin𝐸:* − (
1

ηNOPηbatout	
  
)𝐸G&"8 

If we define 𝑡# as the sleep time between transmissions, then it is possible to move through as 
many days of predicted energy availability as desired, testing smaller values of 𝑡# until a point 
is reached where 𝐸#$&%> 𝑡 < 𝐵c:*. 
 
2.5 Case Study 
 
The case study parameters are derived from representative situations that the Water Corporation 
would find a use for asymmetrical point-to-point transmission from a wireless sensor. Table 1 
shows examples from within the Water Corporation. 



CEED Seminar Proceedings 2017  Sinclair: Energy Harvesting Wireless Sensors 

 65 

 
Case 2016 Solar Exposure 

MJm-2 
Transmission 
Distance 

Measured Property 

 Winter  Summer    
Canning Dam - 
Site Tank 

9 30 ~ 450 m Tank water level (0 – 100%) 

Wungong Dam - 
Site Tank 

8.9 29.4 ~ 520 m Tank water level (0 – 100%) 

Yanchep Smart 
Metering 

7.7 24.3 ~ 500 m Flow 

 
Table 1  Summary of case study parameters 
 

The first two case studies are applicable to the hardware selected, and the third representing 
another that this framework may be applied to in the future. To meet the case study 
requirements LoRa transmission parameters that could realistically meet the 500 m 
transmission requirements are to be used. LoRa has a number of different parameters that can 
effect the power consumption of a transmission, the largest of which are the  Existing work 
shows the range of parameters that should easily provide this distance(Augustin et al. 2016).  
 
For verification, the Linear Technology LTC3106 energy harvesting integrated circuit is used 
on a demonstration board, coupled with a LoRa RFM95 radio module ATMega328p 
microcontroller and MP3V505V pressure sensor. The harvester is able to employ Maximum 
Power Point Control, allowing for maximum power transfer between the selected 
Photovoltaic (PV) Panel and the load or secondary storage element. The chosen PV panel for 
this work was selected to be sufficient but is likely still overprovisioned, at 99mm x 69mm. 
 
3. Preliminary Results 
 
Figure 4 shows the output with a battery where Bmin = 25 mAh,  Bnom = 50 mAh, using the 
astronomical prediction model with data between days 280 and 285 of the year, at a latitude of 
𝐿 = 31.9812	
  °, using typical atmospheric parameter values of 𝑘 = 0, 𝜏 = 0.1 and 𝑅 =
0	
  (Dave, Halpern & Myers 1975; Buchli et al. 2014). The astronomical model values are within 
the recommended range in the literature (Dave, Halpern & Myers 1975; Buchli et al. 2014). 
Figure 4 shows the predicted battery charge output for the minimum determined value of  𝑡#, 
obtained by stepping down from , 𝑡# = 7200	
  𝑠𝑒𝑐𝑜𝑛𝑑𝑠. For this case 𝑡# = 120	
  𝑠𝑒𝑐𝑜𝑛𝑑𝑠. So the 
minimum sleep time between transmissions over this period is predicted as 120 seconds.  
 

  
Figure 4 Modelled battery charge at the minimum predicted sleep time 

between transmission cycles 
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4. Conclusions and Future Work 
 
The validity of the model presented here is yet to be properly tested. However, if the predicted 
operational schedules prove to be valid, then future work could involve investigating alternative 
predictable energy sources using the same framework, such as vibrational energy harvesting, 
replacing the solar energy availability with vibrational. This work only considers a simple 
transmitter, however the load could be generalised to encompass a receive element as well. 
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