Regular Expression Matching for XWraps Action Level Data
Vincentius Edwin Teguh

School of Computer Science and Software Engineering, University of Western
Australia

CEED Partner: Defence Science Technology Organisation

Abstract

This project aims to enable search of user activities on XWraps data. The problem is that the
raw XWraps data is of very low level so that it is difficult to obtain information about the
user activities in the recordings. We translate the raw data into XWraps action level data. A
user activity can be described as a pattern of user actions. Therefore, we use patterns of
action level data to represent user activities. We use regular expressions to represent the
patterns. We implement and adapt an existing regular expression search algorithm for text
strings by Wu and Manber to our XWraps action level data.

1.0 Introduction

The X Windows Recording and Playback System (XWraps) is a recording and playback tool for
X Windows developed by the Defence Science Technology Organisation (DSTO) Australia. It is
usually used to record user activities in training and command applications. XWraps performs
the recording by taking periodic screenshots (usually every one second) and tracking all the
mouse and keyboard events. XWraps uses the program vncrec to record the screen, and xnee to
track the mouse and keyboard events.

1.1 Client’s Requirements

The primary goal of this project is to enable analysis on XWraps data. The problem with
XWraps raw data is that it is of very low level so that directly deducing meaningful information
is very difficult. Up to now, a human-analyst usually examines the data manually to identify
interesting user activities. Considering the large volume of data recorded, this process is too
slow, laborious, and inefficient for manual work. Therefore, this project aims to assist human in

performing analysis of XWraps data by developing a tool that enables analysts to search for user
activities in the data.

1.2 Our Solution

Using XWraps raw data, it is difficult to get any information about user activities. Therefore, it is
helpful to translate the low-level XWraps raw data into a higher level data. We find it helpful to
view the XWraps data at three different levels of abstraction.

1. XWraps Raw Data

2. XWraps Widget Level Data
XWraps widget level data contains information about the states of the visual components
that the user interact with on the screen. This information is useful because the state of
the recorded system can be detected from the states of the visual components that are
visible on the screen. Some examples of this data are “Button A is visible”, “Button B is
disabled”, etc.

117

2007 CEED Seminar Proceedings Vincentius Teguh: Regular Expression Matching

3. XWraps Action Level Data
This data has to do with the actions undertaken by the user. These actions can be detected
from user input events, such as mouse clicks over buttons, and the changes in the states
of the visual components.

We translate the raw XWraps data into XWraps action level data because a user activity can be
described as a sequence of actions performed by the user and action level data is a good
representation of user actions. Hence, searching for a user activity can be done by searching a
pattern of user actions.

In order to get the action level data, we firstly translate the raw data into widget level data. This
can be achieved using the screenshots in the raw data. On each screenshot, we check the
visibility of every visual component. As a result, we have a list of the visual components that are
_visible on every screenshot. We built an annotation tool to label the visual components in the

screenshots. This annotation data is then used in performmg the translation to widget level data.

The action level data can be derived from the widget level data. The actions happening between
two subsequent screenshots can be detected by analysing the differences between them. For
example, if button A is not visible on the first screenshot, but is visible on the next screenshot,
we know that there has been an action that caused the button to become visible. Another type of
action that we want to capture is mouse clicks on buttons. We can achieve this by checking the
mouse clicks on the xnee data whenever we detect that a button is visible.

Once we have the list of actions, the next step is finding the best way to represent a pattern of
user actions. We choose regular expressions because they allow flexibility in expressing the
patterns. Operations such as union (|) and Kleene closure (*) are very useful in representing a
wide range of patterns.

Regular expression matching is a classic problem in computer science. A lot of research has been
conducted in this area. Most of them are focusing on matching text strings. The action level data
has some similar characteristics with text strings. Therefore, we hypothesise that regular
expression algorithms for strings can be adapted for XWraps action level data. Nevertheless,
XWraps action level data also has some unique characteristics which make string regular
expression matching algorithms difficult to apply. Therefore, we investigate the possibility of
applying some existing regular expression matching algorithms to XWraps action level data and
compare them to find the most suitable algorithm for XWraps action level data.

1.3 Regular Expressions
The set of regular expressions over an alphabet X are defined recursively as follows.
1. A character x € 2 U {&} is a regular expression
2. If S and T are regular expressions, then so is the concatenation, (S).(7), the union, (S)I(T),
and the Kleene closure, (5)*. The concatenation symbol (.) is often omitted. For example,
ST is equivalentto S . 7.

The operations in the regular expressions are defined as the following.
1. Union (|) denotes alternation. For example, “(a | ¢)” matches both a and e so that
“gr(ale)y” can match “gray” and “grey”.
2. Concatenation (.) combines two regular expressions together. For example,
concatenating “bo” and “(x | b)” will result a regular expression that matches “box” and
“bob”.

118

2007 CEED Seminar Proceedings Vincentius Teguh: Regular Expression Matching

3. Kleene Closure (*) is a quantifier that indicates there are 0, 1 or more of the previous
expression. For example, “gr(ale)*y” matches “gray”, “grey”, “gry”, “graey”, “greay”,

9% 646

“graaaaaaay”’, “graaaeeeacacacacaeaey’, etc.

In this project, we adapt two algorithms that are most promising: Wu-Manber’s algorithm and
Navarro-Raffinot’s algorithm. However, we only present Wu and Manber’s algorithm in this
paper because of the limitted space available.

2.0 Wu and Manber’s Algorithm [4]
Wu and Manber's algorithm uses Thompson's Nondeterministic Finite Automata (NFA) to
recognise the regular expressions. Thompson’s NFA can be constructed in the following way
[3]. The ellipse represents the automata of a sub-expression. There are two circles in every
ellipse, which represent the start state and the final state of the automata, respectively.

1. For ¢ and a, we build the NFA in the following way

~

3. For regular expressions S and 7, the automaton of S.7 is built in the following way

£

Thompson's NFA has the following properties.
1. It has a unique start and final state.
2. There is at most one non-¢ transition can leave or arrive at any state.
3. The start state has no incoming transition.

119

2007 CEED Seminar Proceedings Vincentius Teguh: Regular Expression Matching

The final state has no outgoing transition.

At most two transitions leave from and arrive at each state.

For regular expression of length m (including operators), there are at most 2m states.
All the non-¢ transitions are forward moves.

The € moves can be backward moves and may “jump” arbitrarily.

® oWk

Once we have constructed the NFA, we label the states with numbers so that all the non-¢
transitions from state i are always forward moves to state i+/. An example of such numbering
scheme is shown in Figure 1.

3 ¢ 4 8 3

L]
£y
i
¢

Figure 1 Thompon's NFA corresponding to ab(cdle)*fg

Using the labelled NFA, we can now represent the NFA using bit masks. The i-th bit of the bit
mask represents the i-th state of the NFA. We use the following variables to represent the NFA.
1. e-move[x]. This variable shows all the states reachable from state x by e-transitions.
2. e-states. This bit masks indicates the states that have outgoing e-transitions.
3. Blo]. For each character o in the alphabet, the i-th bit of B[o] is set to one if o belongs to
the i-th state of the NFA.

2.1.1. Simulating Non-g Transitions

Because all the non-¢ transitions are always forward move to the next state, the algorithm for
exact string matching by Baeza-Yates and Gonnet [1] can be used. Simulating a transition by a
character in the automata can be done by performing left-shift to the previous mask (setting the
new bit to one), and then performing AND operation with the bit mask of the character. Figure 3
shows an example of running the algorithm on the automata shown in Figure 2.

Sii=8,<<1) & Blx]

Figure 2 The automata representing "aabac”.

120

2007 CEED Seminar Proceedings Vincentius Teguh: Regular Expression Matching

2 a b a & ¢ 2 2 B 2 ¢ a2 B z b ¢

a i ¢ ¢ 1 1 6 1 1 9 1 9 1 B 1 0 0

a 9 1 0 9 1 0 0 1T 0D & 0 O O 1 0 0

b g ¢t ¢ 0 0 ©® ¢ 1 0 0 0 0 o 1 9

a g 9 ¢ 1 ¢ 0 % o 0 1 8 0 D E S 1

¢ ¢ o 0 0 % 0 0 0 0 & I 0 O 8 0 1
& .

Figure 3 An example of exact matching on patiern "aabac" and the corresponding masks.

2.1.2 Simulating the ¢ Transitions

An ¢ transition from state i to state j means that if we reach state i, we also reach state j at the
same time. Therefore, for every states that has at least one outgoing e-transition, we need to
calculate all the states that are reachable by ¢ moves. Given a set of states S that are currently
active, simulating e-transitions to each active state in the set will give us a new set of active
states §' where S C S'. In order to do it quickly, a table E is pre-computed. Table E maps every
possible set of active states to the new set of active states that can be reached by performing e-
moves. Therefore, the e-transitions can be simulated on S by looking up the corresponding value
of §in the E table.

Combining the non-¢ and € moves, the transition by a character x can be performed by:
S'=E[S << 1 & Blx]]

If the left shift operation, AND operation, and accessing table E can be performed in constant
time, the complexity of simulating the transition is also of constant time complexity. Therefore,
this algorithm has O(n) search time, where n represents the size of the text.

3.0 Adapting the Algorithm to XWraps Action Level Data

Each frame of the action level data records the changes happening between two subsequent
screenshots taken by XWraps. There is a particular time interval (usually one second) between
the screenshots taken by XWraps. Within that interval, it is very probable that more than one
action has happened. Therefore, a frame in the action level data may contain multiple actions.
Such frames are said to be non-linear.

3.1 Non-linearity of XWraps Action Level Data

The non-linearity problem is described as follows. In order for a regular expression to match the
data, it needs to match only one of the characters in the frames (if the frame contains more than
one character). Consider the sample data in Figure 4. In that case, pattern “12367”, “12467”, and
“12567” are all matches to the data.

"
)

TN TEIN S
5
-

Figure 4 An example of non-linear data.

Making use of the bit-parallelism, each time a non-linear frame is read, we perform OR
operation on all the bit masks of the characters in the frame. If fis a non-linear frame containing
the characters f,, f,, ..., f,, the NFA transition reading the frame f can be simulated as follows.

121

2007 CEED Seminar Proceedings Vincentius Teguh: Regular Expression Matching

S'=E[@B<<D&M]
where M = (B[f,] | B[f,] | ... | B[f]

3.2 Nondeterminic Ordering of Actions within a Single Frame

As have been mentioned before, there can be more than one action happening between two
subsequent screenshots taken by XWraps. The problem is that the correct ordering of those
actions is not known. It is the client's requirement that the regular expression search must be able
to match every possible ordering of actions in such case. Therefore, every permutation of
possible action sequence within non-linear frames should be checked.

All the possible permutations can be simulated by reading the same frame repeatedly until no
new active state is found. Every time the same frame is read, we perform OR operation between
the current set of active states and the new set of active states obtained by simulating the same
frame.

S'=SIE[S<<1) &M] (until S’ =8)

When §” = §, the new set of active states is the set of active states after performing all the
possible permutations of the actions in the non-linear frame. The advantage of doing this is that
no backtracking is required so that the time complexity is linear.

By performing the above adaptations, we have our search algorithm as shown in Figure 5.
Preprocessing time is the time required to build the automaton. Most of the preprocessing time is
spent on precomputing the table E because of its large size.

4.0 Refining Thompson’s NFA Construction

This algorithm relies only on the properties number 1, 2, 3, 4, 7, and 8 of Thompson’s NFA so
that the NFA contains some redundant states. We propose a way to refine Thompson's NFA
construction algorithm so that it produces an NFA with smaller number of states while still
preserving the properties needed for Wu and Manber's algorithm.

122

2007 CEED Seminar Proceedings Vincentius Teguh: Regular Expression Matching

WuManberSearch (RE. T =4t 1)

1. Preprocessing

Z. {vzg, I} ¢+ Parse{RE} 1% parse the regular sxprassion */
3 m' « Thompson_varlebleslve] /" bulld the variables of the Thompson's HEA*/
4, F &« BuildElz-move, m'} 2w is the number of stgtes */

5 Searching

& 04— E1] fothe initial state 2/

7 Farj+ I.. aDe

3 # ¢ non-linear S i the frame is not fnear 3/

3 For & = 1, Do mask « mask | BIni

10 D4 £i0 << 1 & mask!

i34 Whila D' =D e #* thecking the permutations */
12 D'eD

13 DD] ElD << § & mask]

14 End of whils

i5 flsa

i§ DD a2 1& B /* simulate the transition */

17 End of &

1% i O & 167 Then report sn ocourrence ending at |

g End of for

Figure 5 The pseudocode of our adaptation to Wu and Manber's algorithm

The following is our modification to Thompson's NFA construction.

1. For regular expressions § and 7, the automaton of § / T'is built in the following way.

Our refined NFA is guaranteed to have less or same number of states compared to the original
Thompson's NFA. It has the advantage of having between m+/ and 2m states for m representing
the size of the regular expression without counting the operator symbols. Reduction in the total
number of states is advantegous because the size of table £ becomes smaller so that the
preprocessing time is quicker.

123

2007 CEED Seminar Proceedings Vincentius Teguh: Regular Expression Matching

5.0 Horizontal Table Splitting

The space required by table E may be too large as it may require up to m'2*"*/ bits in the worst
case where m' represents the number of states in the NFA. In order to reduce the space
requirement of £, we split it horizontally using the method described by Navarro and Raffinot in

[2].

We can split E into k tables so that £ = E, : ... ; E,. Each subtable addresses roughly (m'+1)/k
bits. Therefore, E, maps the bits from | (i - 1)(m'+1)/ k| to |i(m'+1)/k-1]. The full E table can be
accessed by:

E[S,S, ... 1= E,IS, 11 E,[S,]1 ... I E[S,].

The total space for table E is now O(2""*m'k) bits and the cost of accessing the table is O(k) so
that the time for searching text of size n becomes O(kn).

6.0 Conclusions and Further Work

‘We have shown that we can search for user activities in XWraps data by firstly translating the
raw data into XWraps action level data, expressing the activities in patterns of action level data,
and then performing search of the patterns in the action level data. To express patterns of action
level data, we chose regular expressions because of their flexibility. Since the action level data
has some similar characteristics with text strings, we hypothesised that a regular expression
searching algorithm for text strings can be applied to XWraps action level data. However, action
level data also has some unique characteristics so that some modifications are required so that
the algorithms for text strings can be applied. We have shown a way to adapt a searching
algorithm proposed by Wu and Manber. We use the bit-parallelism feature of the algorithm to
handle the non-linear characteristics of XWraps action level data efficiently. We also provide an
improvement to the algorithm by refining the NFA construction process. With smaller number of
states, the preprocessing time is quicker because the size of the table to be precomputed is
smaller.

Another feature that the client desires is to be able to express temporal constraints in the regular
expression. For example, pattern e1{e2 e3* e4}:5 means searching for e1, followed by pattern e2
e3* e4 which must occur within 5 seconds. Further research needs to be done to implement this
feature efficiently.

7.0 References

[1] Baeza-Yates, R., and Gonnet, G. H 1992, ‘A New Approach to Text Searching’,
Communications of the ACM, vol. 35, no. 10, pp. 74-82.

[2] Navarro, G., and Raffinot, M 2004, ‘New Techniques for Regular Expression Searching’,
Algorithmica, vol. 41, no. 2, pp. 89-116.

[3] Thompson, K 1968, ‘Regular Expression Search Algorithm’, Communications of the
ACM, vol. 11, vol. 6, pp. 419-422.

[4] Wu, S., and Manber, U 1992, ‘Fast Text Searching Allowing Errors’, Communications of
the ACM, vol. 35, vol. 10, pp. 83-91.

124

