Improving Cluster Performancewith Dynamic Resource
Management Algorithmsand a Generic Resource Management
Framework

Joshua King

School of Computer Science and Software Engineering
School of Electrical and Electronic Engineering

Defence Science and Technology Organisation

Abstract

Distributed systems need to share tasks efficiently to achieve best performance. Process
migration and dynamic resource allocation algorithms enable this. We investigated such
algorithms, and created a generic resource management framework. We used openMosix to
provide transparent process migration under Linux. Experiments that were run on 4-, 8- and 12-
node clusters showed that performance depends heavily upon the process migration mechanism
as well as the algorithms. Opportunity cost algorithms that monitored both CPU and memory
consumption were the most efficient.

1.0 Introduction :

Resource allocation is an important consideration in all computer systems design. Distributed
computer systems, or clusters, are no different. Distributing workload between multiple systems is
not trivial. We investigated techniques and algorithms for achieving balanced resource allocation in
a cluster. We then developed an object-oriented framework to enable direct comparison of some of
these algorithms. Lastly we ran experiments on a 12-node cluster to evaluate the algorithms and the
framework. The eventual goal of this work is to develop a generic resource manager that can
provide load balancing on a distributed computer architecture currently under development at the
Defence Science and Technology Organisation.

2.0 Resource allocation and process migration

Resource allocation is an intractable problem, generally solved by either static or dynamic
techniques. Static resource allocation involves taking a set of jobs and mapping them onto a fixed
set of nodes ahead of time. Static techniques use a priori resource consumption information about
jobs to determine a mapping. Dynamic techniques instead allocate resources on demand. Dynamic
methods improve the load balance continuously by sharing statistical information. (Such methods
may also be called adaptive.) Unlike static techniques, dynamic methods do not require prior
knowledge of the tasks to be executed, nor the operating environment; a benefit that comes at the
cost of overhead at runtime. Here we focus on dynamic resource allocation techniques.

Dynamic resource allocation requires functionality to move jobs between machines. Remote
execution, often used by static resource allocation techmiques, involves starting processes on a
remote machine, however that process cannot be moved again. Remote execution, and therefore
static allocation, may not be efficient with processes that vary their computational requirements

105

2005 CEED Seminar Proceedings ' Joshua King: Improving Cluster Performance

during execution. Process migration adds the ability to move processes between machines during
execution. This often involves copying some or all of the process' state between machines. Process
migration can be repeated multiple times for the same process.

Such a distributed system offering process migration is the MOSIX for Linux (Barak & Braverman
1997) and openMosix (Bar 2005) extensions. These work in the operating system kernel and enable
processes to migrate across a network. This involves splitting the process into two parts — a remote
part, which contains all of the user-level code (such as calculations) and memory; and a local part, or
deputy, which handles all of the kemel interaction (such as input and output). The deputy process
enables the migration to be transparent to all processes. All of the kernel interaction occurs on the
original machine enabling consistent access to resources such as files and sockets. OpenMosix was
used for the experiment environment in this project.

e e ~~~A§~gorithms‘ ‘
The differentiator between dynamic resource management techniques is the algorithms that make
decisions on when, what and where to migrate processes. We implemented a variety of algorithms
with different properties from the literature and compared their behaviour under varying loads.

3.1 Distributed MINIX load balancer

Distributed MINIX (Tsai, Chiou & Jen 1994) is a variant of the MINIX operating system that offers
both process migration and load balancing. We consider their load balancing algorithm. Their
technique involves classifying systems and their processes. A system may have low (< 25%
utilisation), normal or high (> 75% utilisation) load. A process may be classified as /O bound, one
which interacts with the kernel frequently, or CPU bound. It is most beneficial to reduce workload
by migrating only CPU bound processes (Tsai, Chiou & Jen 1994). 1/O bound processes may
receive little speedup after migration because they continue to interact with (and get blocked by) the
overloaded machine.

In Distributed MINIX both the sender and receiver can initiate process migration. A system with
low load can request a process directly from a machine with a higher load (receiver-initiated), or a
machine with high load can send a process to a machine that has advertised itself having a low load
(sender-initiated). The load classification of each system is shared across the network.

3.2 Home model

Home model algorithms (Lavi & Barak 2001) directly consider transparent process migration in
their calculations. The total workload when processing remotely is greater than when processing
locally as long as local resources are available. The home model therefore leaves processes on their
home system whenever possible. A penalty is added to a process' local cost when determining
whether it should be migrated. Processes are still migrated if the home system is overloaded, but the
algorithm selects those with the minimal penalty. Modelling of the additional latency caused by
remote communications should make the algorithm better suited to process migration.

3.3 Hydrodynamic algorithm

The hydrodynamic algorithm (Hui & Chanson 1997) is a way of modelling workload as liquid
flowing between different-sized cylinders. It visualises the workload in each system as the volume
(or equivalently the vertical cross-sectional area) of some liquid filling a cylinder. The computer’s
relative performance, termed capacity, determines the diameter of the cylinder, enabling the

106

2005 CEED Seminar Proceedings Joshua King: Improving Cluster Performance

algorithm’s use in heterogeneous clusters. The goal is to equalise the heights of the liquid in all of
the cylinders. The capacity and height of each node is shared with its neighbours.

34 Opportunity cost algorithm

The opportunity cost model (Amir et al. 2000) extends measurement to multiple resources. While
the above algorithms only use a function of CPU load, opportunity cost adds memory consumption.
This replaces ignoring or having independent algorithms for different resources. It calculates the
sum of the proportion of consumption of each resource as each system’s cost in the cluster. As the
consumption of any resource increases, so does its cost. The algorithm aims to distribute processes
such that the sum of these costs is minimised.

Here we consider the CPU and memory opportunity cost model. The cost of a system according to
this model is given by the following formula:

2ol used memory: - CPU load
c=n toalmemory . L
Figure 1: A cost function for the opportunity cost algerithm,
7 being the number of systems in the cluster and L being the maximum load.

This cost is summed over all systems. The system with the greatest cost attempts to reduce its cost
by finding the best change in the overall cost from migrating a process. If such a reduction in the
overall cost is possible, the migration is attempted.

4.0 Developing the framework

In addition to researching algorithms we needed an object-oriented framework for our resource
manager. It needed to be flexible, allowing changes to be made, for example, to the migration
algorithm. An extensible framework was one of the primary goals of this project, since the target
environment for this research was not finalised.

Keeping the framework generic limited our access to information and services. To address this, we
made abstract interfaces and corresponding concrete implementations for such services as statistics
collection and process migration. OpenMosix and the Linux kernel provided these services in
development and testing. We hope to extend this part of the framework to provide notification of
job arrivals and departures, and to offer an application-specific migration service.

The framework is written to run in a single thread to make it more robust. There is a timer that
triggers each object to update its state at regular pre-determined intervals. This simulates concurrent
execution without having to program against race conditions.

The networking infrastructure uses a pair of classes, a server and a client. We used simple group
communication implemented over multicast UDP sockets to share statistics. This works seamlessly
while the cluster is self-contained on a single network segment, as was the case for our experiments.
Being multicast we don't need to know all of the hosts to send to, however we can still determine the
number of them and their addresses by monitoring the source addresses of statistics packets. We
combat the non-guaranteed delivery of UDP packets by containing statistics within single packets.

This class diagram shows the framework we developed graphically. Under each abstract (ifalicised)
class are concrete implementations providing that service that are not shown.

167

2005 CEED Seminar Proceedings Joshua King: Improving Cluster Performance

geutititybs | T8
ﬂu!ﬁple?imez¢

F’ebuwhaﬂl yfsmiaacasew ‘

Figure 2: The structure of the abstraet framework developed,
operations and attributes have been hidden from the diagram.

‘The ﬁaniéwork was realised in the CH; programmmg ylyénguage. We mdde“extensi‘x"é use of thé
Standard Template Library (STL) for its data structures and their automatic memory management.
At this stage only Linux and openMosix statistics collection and migration have been implemented.

5.0 Experimentation and results

Lastly we needed to compare the algorithms that we had implemented. We derived effectiveness
from the execution time and amount of work done, with the hope of ranking the algorithms. We
also tested the scalability of the framework and algorithms across clusters of three sizes.

5.1 Test environment

We set up a cluster of 12 dual-processor Pentium III servers with 1GB of RAM each. We used a
modified ClusterKnoppix (Vandersmissen 2004) environment. ClusterKnoppix is a Linux live CD
providing openMosix that runs entirely from memory. OpenMosix's automatic load balancing was
disabled during all of the experiments. An additional machine with openMosix disabled recorded
the statistics and debugging output from each machine. We monitored the load during and
execution time of the test along with the resource consumption of the resource managers. To test
scalability we compared 4- and 8-computer subsets of the cluster, modifying the openMosix
configuration accordingly.

We ran benchmarks from the openMosix stress test suite (Rechenburg 2005). The stress test suite
was altered to allow each test to be executed independently. We ran the following subset of tests:

e Distkeygen: Generates a large number of RSA encryption keys in parallel processes.

e Forkit: Quickly creates many processes that perform computations but not I/O.

e Portfolio: A stock market simulation written in the Perl interpreted language that splits itself

into multiple processes.

o Timewaster: A test which runs frequently calls the clock in multiple parallel processes.
Each test adjusts its workload based on the number of processors in the cluster. Therefore, in the
12-system tests more work is required than the comparable 4-system test, so absolute execution
times and workloads are not directly comparable. '

5.2 Test results

The method we used to compare results involved determining the execution time and calculating a
workload ratio for each test. We derived this equation for this purpose:

108

2005 CEED Seminar Proceedings . Joshua King: Improving Cluster Performance

N T

o XXcrums
'- “=lr=1 .
warkload razw-— 1007

Figure 3: Formula for calculatmg workload ratio,
where N is the number of systems and T is the execution time in seconds.

The workload ratios for each of the 12-system tests are graphed below. Note that the baseline
values are the result of running the benchmark with no process migration occuring at all (as if
running on a single machine). Some of the forkit tests did not complete. We also tested two
variants of the opportunity cost algorithm. For workload ratio, a larger number indicates higher
efficiency and shorter execution time.

12-node workioad ratios

i Home model

& Distributed MINIX

2 Hydrogynamic

g Opportunity Cost CPU Load
& Opportunity Cost CPU %

3 Basstine

Distkeygen Forkit I Portfolio Timewaster
Benchmark

Figure 4: Graph of workload ratios derived from 12-node experiments

5.3 Analysis

All algorithms migrated processes, increasing the efficiency of the cluster for most tests. The worst
performing algorithm was the home model. We believe this to be the result of our implementation
rather than the theory. Having Linux initiate processes, forcing the home system before we can
decide to move them, reduces performance in all cases. A home model implementation especially
should perform better if triggered upon process creation and termination, but in our framework this
is left for future work.

The two opportunity cost variants show the difference between two methods of determining CPU
consumption, the methods used being the one-minute UNIX load average and the ratio of idle CPU
cycles to total CPU cycles over a second (CPU %). The first can be read directly from the kemel,
whereas the second requires some calculations. The more parallel benchmarks, distkeygen and
timewaster, show the CPU % method outperforming the load average method, verifying previous
results (Kunz, 1991).

All of the algorithms handled the portfolio benchmark very poorly. All execution times were longer
than the baseline, and the workload ratios were rarely better. The low baseline workload shows that
a single node was not taxed by this test. This suggests the algorithms may be too aggressive at
balancing load when it is not necessary.

The forkit test was the only benchmark where most algorithms failed. We discovered the cause to
be the home node’s RAM becoming full. Since the test systems have no virtual memory, exhausting
the memory caused the tests to be killed. Some algorithms managed to migrate some processes

109

... The results show the best-performing al

2005 CEED Seminar Proceedings Joshua King: Improving Cluster Performance

away before the memory was filled and thus completed the benchmark. = All of the algorithms
completed on the 4-system cluster, due to the lower total workload, however both the home model
implementation and the baseline test failed to complete on the 8-system cluster. Likewise, only the
opportunity cost variants completed on the 12-system cluster, which can be due to the inclusion of
memory consumption in their calculations.

We also tested for scalability by analysing the CPU and RAM consumption of the resource
managers during the tests. As the number of systems increased, the CPU usage increased,
suggesting an upper limit on the number of systems that can be managed in this fully-connected
approach. For 12 systems, the average CPU consumption during the tests rarely exceeded 4%.

6.0 Conclusions

ns as the opportuni pproach, which balances

~both CPU and RAM usage. However; there is-a trade-off between ¢ icy of the cluster and the
CPU consumption of the resource manager. Simpler approaches may often be more appropriate.
We also noted with closer analysis that the algorithms are sensitive to the ordering of processes, and
are heavily dependent upon the process migration mechanism, both of which were strictly controlled
in these experiments.

The framework that we developed will be useful in both continuing to analyse better models and for
implementation into the architecture under development. The framework is currently suitable for
moderate-sized clusters, however since each node processes the statistics of every other node,
changes would be needed for large clusters. Adding functionality for intercepting process creation
and termination events would enable an improved implementation of the home model algorithms.

7.0 References

Amir, Y., Averbuch, B., Barak, A., Borgstrom, R.S., & Keren, A. 2000 ‘An opportunity cost
approach for job assignment in a scalable computing cluster,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no.7, pp. 760-8.

Bar, M. (18 August 2005) OpenMosix, an open source Linux cluster project, [Online]. Available
from: <http://openmosix.sf.net> [29 August 2005].

Barak, A., La’adan, O. & Shiloh, A. 1999, ‘Scalable cluster computing with MOSIX for Linux,’ in
Proceedings of Linux Expo 99, Raleigh, USA, pp. 95-100.

Hui, C. & Chanson, S. 1999, ‘Hydrodynamic load balancing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 11, pp. 1118-37.

Kunz, T. 1991, ‘The influence of different workload descriptions on a heuristic load balancing
scheme,” IEEE Transactions on Software Engineering, vol. 17, no. 7, pp. 725-30.

Lavi, R. & Barak, A. 2001, ‘The home model and competitive algorithms for load balancing in a
computing cluster,” in 21* International Conference on Distributed Computing Systems,
Mesa, USA, pp. 127-34.

Rechenburg, M. The openMosix stress-test, Version 0.1-4.1 [Online]. Available from:
<http://www.openmosixview.com/omtest/> [29 August 2005].

Tsai, S.R., Chiou, J.-T., & Jen, H.-T. 1994, ‘Load balance facility in distributed MINIX system,’ in
Proceedings of the 20" * EUROMICRO Conference. System Architecture and Integration,
Liverpool, UK, pp. 162-9.

Vandersmissen, W. (20 June 2005) ClusterKnoppix — Main, Version 3.6-2004-08-16-EN-cll
[Online]. Available from: <http://bofh.be/clusterknoppix/> [29 August 2005].

110

