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Abstract 

 
Many of the Water Corporation’s water bores are nearing the end of their expected 
design life and the decision for repair or replacement must be made. Due to the 
anticipated spike in bore expenditure in 2016, it is desirable to reduce financial pressure 
by identifying bore expenses that can be delayed. This project focuses on developing a 
methodology for assessing the steel bores using a probabilistic mathematical model to 
predict the effects of pitting corrosion. The stochastic nature of pitting has been modelled 
using a Markov process, although the model can be improved using findings from the 
literature. As the model accounts for different environments, the corrosivity of different 
rock stratas were investigated and it was concluded that shale and clay were the most 
severe environments. The Markov model will be adapted to suit pitting corrosion in water 
as internal damage is of greater concern than external corrosion. Inspection techniques 
are required to assess the current bore condition and it was found that technology from 
the oil and gas industry can be adapted.  The inspection technique and corrosion model 
are yet to be verified, and this is likely to be outside the scope of this project. 

 
1. Introduction 
 
The ability to accurately predict asset deterioration and failure adds value to a company, for 
example by reducing downtime or preventing potential safety incidents. Many of the steel 
bores at the Water Corporation are nearing the end of their design life of around thirty years, 
however it is proposed that due to varying environmental conditions, the true lifetimes will 
vary. It is in the Water Corporation’s interest to change their reactive maintenance strategy 
with bores to a performance based strategy which allows maximisation of asset lifetime time 
without severely compromising reliability. There is an expected spike in bore expenditure in 
2016, hence this project seeks to defer capital expenditure by determining which 
repairs/replacements can be postponed. 
  
A mathematical model is being developed to predict the Remaining Service Life (RSL) by 
estimating bore-wall damage. The primary deterioriation mechanism is pitting due to Sulphate 
Reducing Bacteria (SRB), although there are other deterioration mechanisms  that need to be 
accounted for. Due to the stochastic nature of pitting (Caleyo et al. 2009), the model being 
used is a Markov process model which, theoretically has the ability to predict how a pit-depth 
distribution changes over time, however attempts are being made to incorporate models by 
different authors to improve accuracy.  
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In addition to the model, the Water Corporation is interested in a technique for inspecting 
pitting damage. There currently exists no specialised technique, so techniques from other 
industries are being investigated through trials. The trial tests will also play a crucial role for 
verifying the mathematical model as existing data in this area is scarce. Any successfully 
trialed techniques may be implemented as part of the company’s condition assessment 
methodology.  
 
2. Project Methodology 
 
This project can be broken down into multiple phases. Stage one is a literature review of 
Microbiologically Induced Corrosion (MIC) and techniques for inspecting pitting corrosion. 
Since there are no specialised techniques for inspecting water bores, methods in the oil and 
gas industry for inspecting steel pipe corrosion were investigated. The techniques needed to 
satisfy certain requirements such as: 

• Ability to do in-situ inspections 
• High resolution 
• Works on mild/stainless steel 

• Accurate 
• Relatively affordable 
• Locally available 

The next stage was compiling location, size, age and construction material data for all of the 
corporation’s bores. Plotting the data helped visualise the number of bores nearing the end of 
their design life, and allows a rough prediction on short-term expenditure on these assets. 
Visualising the use of different materials in different regions is important for future inspection 
prioritisations by identifying regions requiring more attention. 
 
Stage three was a review of the different corrosion environments in each region. Rock stratas 
at different depths were collated for each region (using bore logs) and investigated to 
determine their corrosivity to the external casing of ungrouted steel bores. A summary sheet 
on the corrosivity of each strata was compiled. 
 
The software used for investigating the mathematical model is Mathematica, due to its 
superiority in visualisation and symbolic manipulation. Once finalised, model will be 
transferred to an Excel spreadsheet to be handed over as a deliverable. The current inputs for 
the model include environmental parameters such as pH, the concentration of sulphate and the 
water content. It also requires the initial pit distribution as measured by the inspection 
technique. 
 
The final deliverable is a methodology that allows the Water Corporation to systematically 
decide whether or not to inspect a bore. The triggers for the inspection will be determined 
collaboratively with the aid of the predictions made by the mathematical model. One method 
is to use the point when a certain proportion of pits are predicted to be greater than a pre-
determined value. The time of the inspection must give enough time for potential maintenance 
to be carried out before failure occurs. 
 
3. Results and Discussion 
 
3.1 Microbiologically Induced Corrosion (MIC) 
 
It is known that the bores are susceptible to fouling, which subsequently leads to MIC. The 
mechanisms can be categorised into three groups: differential aeration, change of pH and 
anaerobic conditions. The uneven formation of a biofilm/scale causes differential aeration by 



CEED Seminar Proceedings 2015  Ding: Investigating Bore Remaining Service Life 

 57 

limiting oxygen diffusion in some areas, leading to oxygen concentration cells. In the 
presence of oxygen, sulphate oxidising bacteria produce sulphuric acid which changes the pH 
and promotes corrosion. Anaerobic conditions form beneath the biofilm/scale, harbouring 
anaerobic bacteria like SRB. SRB generates sulphide ions and hydrogen – the sulphide reacts 
with iron to form mackinawite (scale) while the hydrogen can potentially diffuse into the 
steel, causing hydrogen attack (Silverman & Puyear 1987). The sulphur oxidising and 
reducing bacteria form a local ecosystem that survives off the sulphur cycle. 
 
3.2 Inspection Techniques 
 
There are three main categories of inspection techniques that can detect pitting corrosion. 
Table 1 summarises each category with their abilities. All three techniques are covered by two 
oil field service companies, which have been contacted to perform trial inspections. 
 

Technique Category Description Application 

Ultrasonic 
Techniques (UT) 

These rely on the reflection times of acoustic 
waves to determine the position of interfaces. 
Interfaces include material changes and defects 
(NDE Associates 2015). 

Mild Steel & 
Stainless Steel 

Magnetic Flux 
Leakage (MFL) 
Technique 

These rely on saturating a ferromagnetic 
material with magnetic flux and detecting 
perturbations in the field due to changes in 
thickness or defects (NDE Associates 2015). 

Mild steel 

Eddy Current (EC) 
Techniques 

These rely on detecting the magnetic field 
generated by induced eddy currents. Because 
the exciting magnetic field oscillates, this 
technique works better on non-ferromagnetic 
materials (NDE Associates 2015). 

Stainless steel 

 
Table 1  A summary of the different categories of techniques that can be 

used to inspect pitting corrosion in steel water bores. 
 
A disadvantage of the ultrasonic technique is it requires water coupling and hence cannot 
function above the water surface. The MFL and EC techniques operate without a medium but 
they are only effective on either mild or stainless steel (NDE Associates 2015). 
 
3.3 Soil Strata Profiling 
 
The predominant rock stratas identified were basalt, granite, shale, clay, sandstone and 
limestone. Conditions can be considered anaerobic a few metres below ground, hence the 
main parameters that determine the corrosivity of these strata are: water content, pH, 
resistivity, soluble ions and microbiological activity (Caleyo et al. 2009). After investigating 
the  geobiology of these layers, it was concluded that clay had the greatest potential of 
harbouring bacteria that caused external pitting. The conditions for bacteria to thrive are: 
tolerable environmental conditions (e.g. temperature and pressure), the presence of a carbon 
and energy source and the presence of water (Bachofen et al. 1998). Clay has around 10% 
organic content, contain sulphur compounds (Hajj et al. 2010) and a high porosity for water 
and bacteria to reside (Bachofen et al. 1998). 
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3.4 Mathematical Model 
 
For this project, pitting is modeled as a stochastic process, meaning the exact depth cannot be 
predicted exactly and a statistical approach must be used. A Markov process model is used to 
model the change in pit depth distribution over time. The model uses Markov states to 
represent a pit depth (a low state representing a shallow pit) and the transition between states 
represents the corrosion process. By constructing a probability density function that evolves 
with time, the proportion of pits between certain depth values can be tracked. With increasing 
age, the entire population will shift towards higher states and a threshold can be defined using 
the probability-of-exceedance of a particular pit depth. The probability density function for a 
pit being in state 𝑛 at time 𝑡 is (Caleyo et al. 2009): 
 

𝑝! 𝑡 = 𝑝! 𝑡!
𝑛 − 1
𝑛 −𝑚

𝑡! − 𝑡!"
𝑡 − 𝑡!"
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! !!!!
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𝑝! 𝑡! : Initial pit distribution 
𝑛: Number of markov states 
𝑚: Current state of the pit 
𝑡!": Time of pitting initiation 

𝑡! : Time of measurement of initial pit 
depth distribution 
𝜈 : Pitting exponent factor (function of 
environmental parameters) 

 
The equation comes from solving a differential equation known as Kolmogorov’s forward 
equation (also known as the Fokker Planck equation). Assumptions 2 and 3 (see below) 
enables simplification of the expression from state-transition probabilities to the pit-depth 
distribution (above). It is important to know the assumptions for this model as it leads to 
certain limitations. The implications of the four major assumptions are described below. 
 
1. The model deals with identically, independently distributed (IID) random variables (Rivas 

et al. 2008): This assumes the depth of each pit is independent of all the others. This 
assumption is questionable for pits in the vicinity of each other however it is a necessary 
assumption. In fact this assumption means the answer is more conservative as a corroding 
pit reduces corrosion of surrounding pits (Liu 2013). Melchers and Jeffrey (2008) found 
cases of bi-modal pitting, where a group of ‘stable’ pits growth faster than the remaining 
‘meta-stable’ pits, resulting in two peaks in the distribution. 

2. The empirical mean pit-depth follows the power law (Caleyo et al. 2009): The time 
evolution of the average pit depth is known to take the form 𝐷 𝑡 = 𝜅 𝑡 − 𝑡!" !. 

3. Model follows a linear growth rate (Caleyo et al. 2009): The physical interpretation is that 
higher states (deeper pits) grow at a faster rate. 

4. The system is memoryless (Caleyo et al. 2009): This means the current pit distribution is 
independent of the past and predictions for the future can be made using only current data. 
This is also known as the Markov property. 

 
The model requires data for the initial pit distribution and some environmental parameters for 
rock corrosivity. According to Shibata (1994), pit depths generally follow the Gumbel 
distribution, hence a fictitious distribution was constructed for the purpose of visualisation of 
the model. Figure 1 shows the evolution of the distribution over time. Notice the spread of the 
curve increases with time – the result of assumption 3. The probability of the pit depth 
exceeding 9  𝑚𝑚 at 30, 40 and 50 years are: 0.1%, 0.8%  and 2.5% respectively. If a threshold 
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of 2.5% is chosen, then with the current age being 30 years, the remaining lifetime is 20 
years. 

 
Figure 1  An arbitrary Gumbel distribution used to visualise the evolution of 

the pit-depth distribution. The age is relative to pitting initiation. 
 
3.5 General issues to Consider 
 
It is uncertain if the inspection techniques accurately detect subsurface cavities (Figure 2). If a 
significant number of these pits exist and cannot be detected, it will give the wrong 
impression for the pit-depth distribution. 

Figure 2  Different pit geometries. It is unknown if subsurface pits (type b) 
can be accurately measured. 

 
The current model was designed for pitting in soil (Caleyo et al. 2009) so there needs to be a 
slight adaption for a water environment. In addition, Melchers and Jeffrey (2008) questioned 
if the power law (assumption 2) for pitting corrosion is applicable to SRB induced pitting. 
The power law was derived from laboratory experiments and according to Melchers, field 
data shows the corrosion rate increased significantly upon the onset of pitting due to bacteria. 
 
This paper only outlines one possible approach out of multiple identified possibilities not 
explained in this paper (for example the block maxima method). These methods can be 
explored and combined with the findings from Melchers to improve the predictions. 
 
4. Conclusions and Future Work 
 
The aim of this project is to develop a condition assessment methodology to predict the RSL 
of steel water bores. It is known that pitting corrosion due to SRB is of primary concern and 
viable techniques for inspection haave been (with trials organised). A Markov process model 
was reproduced to predict the change in pit-depth distribution over time and this allowed an 
estimate of the RSL. Even though the methodology will be developed by the end of this 
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project, both the inspection technique and mathematical model need to be verified. The 
confidence intervals for the predictions should be investigated, similar to what is presented by 
Liu and Meeker (2015). The complexity of the model can be increased by accounting for pit 
generation, or it can be refined through synthesis with other models. Overall, the objectives 
for this project will be achieved and the models can even be extended to manage other assets 
such as steel pipes and tanks. 
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